Krylov subspaces from bilinear representations of nonlinear systems
نویسندگان
چکیده
منابع مشابه
Krylov Subspaces from Bilinear Representations of Nonlinear systems
For efficient simulation of state-of-the-art dynamical systems as arise in all aspects of engineering, the development of reduced-order models is of paramount importance. While linear reduction techniques have received considerable study, increasingly nonlinear model reduction is becoming a significant field of interest. From a circuits and systems viewpoint, systems involving micromachined dev...
متن کاملOn a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear elasticity
1. Introduction. We consider the resolution of large-scale nonlinear problems arising from the finite-element discretization of geometrically non-linear structural analysis problems. We use a classical Newton Raphson algorithm to handle the non-linearity which leads to the resolution of a sequence of linear systems with non-invariant matrices and right hand sides. The linear systems are solved ...
متن کاملRecycling Krylov Subspaces for Sequences of Linear Systems
Many problems in engineering and physics require the solution of a large sequence of linear systems. We can reduce the cost of solving subsequent systems in the sequence by recycling information from previous systems. We consider two di erent approaches. For several model problems, we demonstrate that we can reduce the iteration count required to solve a linear system by a factor of two. We con...
متن کاملReduction of Second Order Systems Using Second Order Krylov Subspaces
By introducing the second order Krylov subspace, a method for the reduction of second order systems is proposed leading to a reduced system of the same structure. This generalization of Krylov subspace involves two matrices and some starting vectors and the reduced order model is found by applying a projection directly to the second order model without any conversion to state space. A numerical...
متن کاملKrylov Subspaces Associated with Higher-order Linear Dynamical Systems
A standard approach to model reduction of large-scale higher-order linear dynamical systems is to rewrite the system as an equivalent first-order system and then employ Krylov-subspace techniques for model reduction of first-order systems. This paper presents some results about the structure of the block-Krylov subspaces induced by the matrices of such equivalent first-order formulations of hig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
سال: 2007
ISSN: 0332-1649
DOI: 10.1108/03321640710727755